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Abstract

 

This report gives an introduction to the basic concepts and principles  involved in the formulation 
of nonlinear problems in solid mechanics.  By way of motivation, the discussion begins with a 
survey of some of the important sources of nonlinearity in solid mechanics appliations, using 
wherever possible simple one dimensional idealizations to demonstrate the physical concepts.  
This discussion is then generalized by presenting generic statements of initial/boundary value 
problems in solid mechanics, using linear elasticity as a template and encompassing such ideas 
as strong and weak forms of boundary value problems, boundary and initial conditions, and 
dynamic and quasistatic idealizations.  The notational framework used for the linearized problem 
is then extended to account for finite deformation of possibly inelastic solids, providing the 
context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite 
element technology given in three companion reports.
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Introduction

We begin our study of nonlinear computational solid mechanics in this chapter by surveying
some frequently encountered sources of nonlinearity in engineering mechanics. This will be
in a rather elementary way by discussing the truss member, which is perhaps the simplest 
structural idealization and which is assumed to transmit loads in the axial direction only. By
introducing various nonlinearities into this system one at a time, we will motivate the more 
general discussion of nonlinear continuum mechanics, constitutive modeling, and numerica
treatments to follow. This model system will serve as a template throughout the text as new
continuum mechanical and computational ideas are introduced.

Following this motivation will be an introduction to the prescription of initial/boundary value 
problems in solid mechanics. This introduction will be provided by discussing a completely
linear system; namely, linear elastic behavior in a continuum subject to infinitesimal 
displacements. This treatment will include presentation of the relevant field equations, boun
conditions, and initial conditions, encompassing both dynamic and quasistatic problems in 
discussion. Also featured is a brief discussion of the “weak” or “integral” form of the govern
equations, providing a starting point for application of the finite element method. Examinati
these aspects of problem formulation in the comparatively simple setting of linear elasticity
allows one to concentrate on the ideas and concepts involved in problem description witho
need for an overly burdensome notational structure.

In anticipation of nonlinear solid mechanics applications, however, we will find it necessary
expand this notational framework so that large deformation of solids can be accommodated
Fortunately, provided certain interpretations are kept in mind, the form of the governing 
equations is largely unchanged by the generalization of the linear elastic system. This chap
therefore provides an introduction to how this generalization can be made. However, it will 
seen that the continuum description and constitutive modeling of solids undergoing large 
deformations are complex topics that should be understood in detail before accompanying
numerical strategies are formulated and implemented. The closely related topics of nonline
continuum mechanics and constitutive modeling will therefore be the subjects of the followi
two chapters, with significant discussion of numerical strategies being deferred to Finite 
Elements.

This introduction is concluded with a short list of references the reader may find useful as 
background material. Throughout the text we assume little or no familiarity with either the fi
element method or nonlinear solid mechanics, but we do assume a basic level of familiarity
the mechanics of materials, linear continuum mechanics, and linear elasticity. Accordingly, 
basic references are intended for those readers wishing to fill gaps in knowledge.
Theory Manual Formulation of Nonlinear Problems - Introduction 1
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Other Reading

The following resources are suggested for those readers wishing to reinforce their knowled
linear elasticity, elementary continuum mechanics, and/or fundamentals of solid mechanics
are presented in alphabetical order, with no other significance to be attached to the order o
presentation.

Fung, Y.C., 1965

Fung, Y.C., 1977

Hughes, T.J.R., 1987

Lai, W.M, Rubin, D. and Krempl, E., 1993

Malvern, L.E., 1969

Pilkey, W.D. and Wunderlich, W., 1994

Timoshenko, S. and Goodier, J.N., 1970
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Linear Structural Component

We consider the simple axial (or in structural terms, truss) member shown schematically in
Figure 1.1. We can think of this member as a straight bar of material whose transverse 
dimensions are small compared to its overall length and which can only transmit loads in th
axial direction. Real world examples include taut cables in tension, truss members, and sim
rod-like objects.

Figure 1.1 Axial model problem: schematic and local coordinate system.

We index the material with coordinates x , which run between values 0 and . Assuming that all 

displacement of the rod occurs in the axial direction, we write this displacement as u(x ,t ), with 

t  signifying time. The infinitesimal, or engineering, strain at any point  is given by

. (1.1)

The true stress  at any point in the bar and at any instant is described via

, (1.2)

where P is the total axial force acting at location x, and A is the current cross-sectional area at 
that location. If the cross-sectional area does not change very much as a result of the 
deformation, it is appropriate to define the nominal, or engineering, stress as

, (1.3)

u(x)

x L 0=x 0=

L0

x 0 L0,( )∈

εE x t,( )
x∂
∂

u x t,( )=

σT

σT x t,( ) P x t,( )
A x t,( )
------------------=

σE
P x t,( )
A0 x( )

------------------=
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where  is the initial cross-sectional area at point x . If the material behaves in a linear 

elastic manner, then  and  are related via

, (1.4)

where E is the elastic modulus, or Young’s modulus, for the material.

To begin we consider the case of static equilibrium where inertial effects are either negligible or
nonexistent, and the response is, therefore, independent of time. One can in this case supp
time argument in Eqs. (1.2) and (1.4). The balance of linear momentum for the static case 
expressed at each point x  by 

, (1.5)

where f  is the applied external loading, assumed to be axial, with units of force per unit length
Substitution of Eq. (1.4) into (1.5) gives the following ordinary differential equation for u(x) on 

the domain :

. (1.6)

If we assume that the cross-section is uniform, so that  does not vary with x , and that the 

material is homogeneous, so that E does not vary throughout the rod, one gets further 
simplification:

. (1.7)

We note that (1.7) is a linear, second order differential equation for the unknown displacem
field u. To pose a mathematical problem that can be uniquely solved, it is necessary to pos
boundary conditions on the unknown u. We will be interested primarily in two types, 
corresponding to prescribed displacement and prescribed force (or stress) boundary conditions. 
An example of the former would be

, (1.8)

while an example of the latter is

, (1.9)

where  and  are prescribed values for the displacement and axial stress at the left and 
bar ends, respectively. In mathematics parlance the type of boundary condition in (1.8) is c
Dirichlet boundary condition, while the sort of boundary condition represented by (1.9) is a 

A0 x( )

σE εE

σE EεE=

xd
d

A0 x( )σE x( )( ) f x( )=

0 L0,( )

xd
d

EA0 xd
d

u( ) 
  f=

A0

EA0
x

2

2

d

d
u x( ) f=

u 0( ) u=

σE L0( ) E=
xd

du
L0( ) σ=

u σ
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Neumann boundary condition. Dirichlet boundary conditions involve the unknown dependen
variable itself, while Neumann boundary conditions are expressed in terms of its derivative

Virtually any combination of such boundary conditions can be applied to our problem, but o
one boundary condition (i.e., either a Neumann or Dirichlet condition) can be applied at ea
endpoint. In the case where Neumann (stress) conditions are applied at both ends of the b
solution u(x) is only determinable up to an arbitrary constant (the reader may wish to verify
fact by applying separation of variables to Eq. (1.7)).

We now consider a particular case of this linear problem we have posed that will be useful 
considering some of the various nonlinearities to be discussed below. In particular, suppos

 on the domain , and furthermore consider the boundary conditions

(1.10)

and

, (1.11)

where  is an applied force on the right end of the rod.

In this case examination of Eq. ,,,(1.5) yields

, (1.12)

meaning that  does not vary along the length of the rod. Since  is proportional to  (

Eq. (1.4)), the strain must also be a constant value along the rod length. Finally, in view of 
(1.1), we conclude that u(x) must vary linearly with x. In other words, we know that the solution
u(x) must take the form

, (1.13)

where δ is the elongation or difference between the left and right end displacement. The pro

therefore reduces to finding the elongation produced by the applied force .

This problem is trivially solved and leads to the familiar linear relationship between  anδ:

; (1.14)

in other words, we have a simple linear spring with stiffness . After solving for δ one may 

merely substitute into (1.13) to obtain the desired expression for u(x).

f 0= 0 L0,( )

u 0 at x 0= =

σE
F

ext

A0
--------- at x L= =

F
ext

A0 xd
d σE x( )( ) 0=

σE σE εE

u x( ) u 0( ) δx+ δx= =

F
ext

F
ext

EA0

L0
---------δ F

ext
=

EA0

L0
---------
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Material Nonlinearity

We can examine the case of a so-called material nonlinearity by replacing Eq. (1.4) with the 

following generic relationship between  and :

, (1.15)

where  is a smooth and generally nonlinear function (see Figure 1.2). 

We make few restrictions on the specific form of  other than to assume that  for a

values of . If we retain the assumption that  and impose boundary conditions (1.10)

(1.11), then Eq. (1.12) is still valid, that is:

(1.16)

throughout the rod.

Furthermore, since we assume that a one-to-one relation exists between  and , we can 

conclude that just as in the linear case, the strain is a constant value in the rod given by

. (1.17)

Figure 1.2 Schematic of a nonlinear, one-dimensional stress-strain relation.

We can solve the problem by finding δ as before, but now we must solve the nonlinear equatio

. (1.18)

σE εE

σE σ̂ εE( )=

σ̂

σ̂
εd

d σ̂ 0>

εE f 0=

σE
F

ext

A0
---------=

σE εE

εE
δ
L0
-----=

ε

σ
σ̂ x( )

A0σ̂ δ
L0
----- 

  F
ext

=
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Let us reexpress Eq. (1.18) as an equation for the displacement at the right end, which we

denote as . We can write

, (1.19)

where  is a nonlinear function of the unknown  defined in this case as

. (1.20)

In general, Eq. (1.20) will not have a closed-form solution, and some sort of iterative proced
is necessary. Among the most common and widely used of such procedures is Newton-Raphson 
iteration. In this method one introduces a set of indices, i , corresponding to the iterations and 

given a current iterate, , a first-order Taylor series expansion of (1.20) is utilized to gene

the next iterate, :

, (1.21)

where

. (1.22)

Equation (1.21) can be expressed more compactly via

, (1.23)

where , the residual or out-of-balance force, is given by

, (1.24)

and , the incremental or tangent stiffness, is written as

. (1.25)

The Newton-Raphson procedure is then carried out by recursively solving Eqs. (1.23) and 
We will return to this general algorithmic strategy, and variants of it, repeatedly throughout 
text.

dL u L( )=

N dL( ) F
ext

=

N dL( ) dL

N dL( ): A0σ̂
dL

L0
------ 

 =

dL
i

dL
i 1+

0 F
ext

N dL
i 1+( )–= Fext N dL

i( )
dLd
d

N dL
i( )∆dL+ 

 –≈

dL
i 1+ dL

i ∆dL+=

K dL
i( )∆dL R dL

i( )=

R dL
i( )

R dL
i( ): Fext N dL

i( )–=

K dL
i( )

K dL
i( ):

dLd
d

N dL
i( )=
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Geometric Nonlinearity

Geometric nonlinearities are induced by nonlinearities in the kinematic description of the sys
at hand. We will identify and work with several nonlinearities of this general type throughou
text, but to begin we will consider two particular cases, still working in the context of our sim
model problem. 

The first type of nonlinearity we consider is introduced by the use of nonlinear strain and st
measures in definition of the stress-strain relation. As an example let us consider alternativ

Eqs. (1.1) and (1.3), which defined the engineering strain  and engineering stress  tha

have utilized to this point. When used in our model problem with  and boundary 
conditions (1.10) and (1.11), we have seen that the engineering strain does not vary over th

length, having the constant value . The appropriateness of this strain measure depends

the amount of deformation; specifically δ should be infinitesimal for this measure to be 
appropriate. In the presence of larger deformations, the true, or logarithmic, strain is often used:

. (1.26)

Similarly if the cross-sectional area A changes appreciably during the process, it is likely that t

engineering stress  should be replaced by the true stress  defined in Eq. (1.2). In the 

our model problem, this would imply

, (1.27)

where A is to be interpreted as the cross-sectional area in the final (deformed) configuration

Relating this area to the elongation δ requires a constitutive assumption to be made. For exam
if we assume the rod consists of an isotropic elastic material, we could approximate this va
by considering the area to vary according to Poisson’s effect. This would require that for ea

differential increment  in the axial true strain, each lateral dimension should be change

factor of , where ν is Poisson’s ratio for the material. At a given instant of the loadin

process, therefore, an incremental change in the area Α can be approximated via

. (1.28)

Integrating (1.28) between the initial area  and the final area and using (1.26) gives

. (1.29)

εE σE

f 0=

δ
L0
-----

εT
γd

γ
------

L0

L

∫ L
L0
----- 

 log 1 εE+( )log= = =

σE σT

σT
Fext

A
---------=

εTd

1 ν εTd–( )

A Ad+ 1 ν εTd–( )2
A 1 2ν εTd–( )A≈=

A0

A A0

L0

L
----- 

 
2ν

A0

L0

L0 δ+
--------------- 

  2ν
= =
Theory Manual Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity 8



rigid 
 the 
d this 

inned 
tes 

axis 

ce 

xial 
e 

 
l 
If we assume that

, (1.30)

then we can use Eqs. (1.26), (1.27), and (1.29) to conclude that

, (1.31)

which is an obviously nonlinear equation governing the elongation δ. Note that this nonlinearity 
is not caused by any sort of nonlinear stress-strain relation but instead results from the 
observation that the amount of deformation may not be small, necessitating more general 
representations of stress and strain.

The second sort of nonlinearity we wish to consider is that caused by large superimposed 
body rotations and translations that introduce nonlinearities into many problems even when
strains introduced into the material are well-approximated by infinitesimal measures. Towar
end we refer to Figure 1.3, in which we imbed our one-dimensional truss element in a two-
dimensional frame. We locate one end of the rod at the origin and consider this end to be p
so that it is free to rotate but not to translate. The other rod end, initially located at coordina

, is subjected to a (vector valued) force , which need not be directed along the 

of the rod.
 

Figure 1.3 Model problem with infinitesimal motions superposed on large 
rigid body motions.

We note that if we placed a restriction of small motions this problem would be ill-posed; sin

the rod is incapable of transmitting anything but axial force,  would need to act in the a
direction in this case. In the current context we allow unlimited rotation to take place with th

result being, of course, that the rod will rotate until it aligns with  in its equilibrium 
condition. In fact, this observation allows us to guess the solution to the problem. Since we
assume that the axial response of the rod is completely linear, we may deduce that the fina
elongation is given by

σT EεT=

EA0

L0

L0 δ+
--------------- 

  2ν L0 δ+

L0
--------------- 

 log F
ext

=

x1
0

x2
0,( ) F

ext

x1

x2

F
ext

x1
0

x2
0,( )

F
ext

F
ext
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where  denotes the Euclidean length of the vector . The final orientation of the ro

must coincide with the direction of , so we can write the final position of the rod end us

the coordinates  as:

; (1.33)

or writing the solution in terms of the rod end displacements  and :

. (1.34)

It is instructive to proceed as though we do not know the solution summarized in (1.34) and

formulate the equilibrium equations governing  and .

If we observe that the elongation δ of the rod can be written as

, (1.35)

then Eq. (1.32) gives the relationship between  and the unknown displacements. 

Furthermore, as noted above, the direction of  is given by

. (1.36)

Combining these facts gives the equation that governs  and :

. (1.37)

The reader may wish to verify this equation by substituting the solution (1.34) into (1.37).

δ
L0 F

ext

EA0
--------------------=

F
ext

F
ext

F
ext

x1
f

x2
f,( )

x1
f

x2
f

L0

F
ext

------------- 1 F
ext

EA0
-------------+

 
 
  F1

ext

F2
ext

=

d1 d2

d1

d2

L0

F
ext

------------- 1 F
ext

EA0
-------------+

 
 
  F1

ext

F2
ext

x1
0

x2
0

–=

d1 d2

δ d1 x1
0

+( )
2

d2 x2
0

+( )
2

+ L0–=

F
ext

F
ext

F
ext

F
ext

-------------
1

d1 x1
0

+( )
2

d2 x2
0

+( )
2

+

--------------------------------------------------------------
d1 x1

0
+

d2 x2
0

+
=

d1 d2

F1
ext

F2
ext

EA0

d1 x1
0

+( )
2

d2 x2
0

+( )
2

+ L0–

L0 d1 x1
0

+( )
2

d2 x2
0

+( )
2

+

--------------------------------------------------------------------------
d1 x1

0
+

d2 x2
0

+
=
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Equation (1.37) is a nonlinear, vector-valued equation for the unknowns  and . Recall

the generic form for nonlinear equations we introduced in the one-dimensional case in (1.1
could write this generically as

, (1.38)

where

(1.39)

and

. (1.40)

Just as was done in the last section for the one degree of freedom case, we could introduc
Newton-Raphson strategy to solve (1.38) via

(1.41)

and

, (1.42)

where

. (1.43)

Carrying out the calculation of  for the specific  at hand gives

. (1.44)

 is given by

d1 d2

N d( ) F
ext

=

d
d1

d2

=

N d( ) EA0

d1 x1
0

+( )
2

d2 x2
0

+( )
2

+ L0–

L0 d1 x1
0

+( )
2

d2 x2
0

+( )
2

+

--------------------------------------------------------------------------
d1 x1

0
+

d2 x2
0

+
=

K d
i( )∆d R di( ) Fext N di( )–= =

d i 1+ d i ∆d+=

K d
i( )

d∂
∂N

d
i( )

d1∂
∂N1

d2∂
∂N1

d1∂
∂N2

d2∂
∂N2

d d
i

=

= =

K d
i( ) N d( )

K d
i( ) Kdirect d

i( ) Kgeom d
i( )+=

Kdirect d
i( )
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and  is 

. (1.46)

As the notation suggests,  is sometimes referred to as the direct stiffness or that part of the 

stiffness emanating directly from the material stiffness of the system at hand. , on

other hand, is sometimes called the geometric stiffness and arises not from the inherent stiffness
of the material but by virtue of the large motions that the current problem allows.

To gain some insight into these issues in the current context, consider the case where 

; i.e., the case where the motions are small in comparison to the rod’s length. In
case we find

, (1.47)

and

, (1.48)

where  is the angle between the original axis of the truss member and the po

x-axis. In other words, when the motions become small, the geometric stiffness vanishes, a
direct stiffness becomes the familiar stiffness matrix associated with a two-dimensional trus
member.

Kdirect d
i( )

A0E

d1 x1
0

+( )
2

d2 x2
0

+( )
2

+[ ]

3
2
---

-----------------------------------------------------------------  ×

d
i

1 x1
0

+( )
2

d
i

1 x1
0

+( ) d
i

2 x2
0

+( )

d
i

1 x1
0

+( ) d
i

2 x2
0

+( ) d
i

2 x2
0

+( )
2

=

Kgeom d
i( )

Kgeom d
i( ) A0E

1
L0
----- 1

d1 x1
0

+( )
2

d2 x2
0

+( )
2

+

--------------------------------------------------------------–
 
 
 
 

1 0

0 1
=

Kdirect

Kgeom d
i( )

d
i

x
0

«

Kgeom d
i( ) 0→

Kdirect d
i( )

A0E

L0
--------- Θ Θcoscos Θ Θsincos

Θ Θsincos Θ Θcoscos
→

Θ
x2

0

x1
0

-----
 
 
 

atan=
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Contact Nonlinearity

A final type of nonlinearity we wish to consider is that created due to contact with another 
deformable or rigid entity. As a simple model problem for this case, we refer to Figure 1.4, w

we consider a prescribed motion  of the left end of our one-dimensional rod and consider
unknown displacement d of the right end to be subject to the constraint

, (1.49)

where  is the initial separation, or gap, between the right rod end and the rigid obstacle. 

Figure 1.4 Schematic of the rigid obstacle problem.

Even if we assume that the motions are small and the material response of the rod is elast
equations governing the response of our rod are nonlinear. To see this, let us choose d as our 

unknown and construct the following residual  for our system

, (1.50)

where , the contact force between the obstacle and the rod (assumed positive in compre

is subject to the following constraints:

. (1.51)

Equations (1.51) are called Kuhn-Tucker conditions in mathematical parlance and physically 
require that the contact force be compressive, that the rod end not interpenetrate the obsta

that the contact force only be nonzero when ; i.e., when contact between the rod an

obstacle occurs. In fact,  is a Lagrange multiplier in this problem, enforcing the kinemati

constraint (1.49). We see that the condition operating on the right end of the bar is neither a
Dirichlet nor a Neumann boundary condition; in fact, both the stress and the displacement 
point are unknown but are related to each other through constraints (1.51).

Plots of the residual defined by (1.50) and (1.51) are given in Figure 1.5 for the two distinct

of interest: where contact does not occur (i.e., when ) and where contact does occur

). The solutions (i.e., the zeros of R) are readily apparent. When no contact occurs, 

d

g d( ) d g0 0≤–=

g0

d d

Rigid
Obstacle

g0

R d( )

R d( )
A0E

L0
--------- d d–( ) Fc+=

Fc

Fc 0≥   g d( ) 0≤;   and  Fcg d( ) 0=

g 0=

Fc

d g< 0

d g≥ 0
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, while in the case of contact, . The internal stresses generated in the bar are

readily deduced.

One may note from Figure 1.5 some important practical features of this problem. First, in b

cases the admissible region for d is restricted to be less than . Second, at the value 

each diagram shows the residual to be multiple-valued, which is a direct consequence of th

that in this condition (i.e., where ),  can be any positive number.

Figure 1.5 Plots of residuals versus displacement for rigid obstacle problem: 
(a) the case where  (no contact) and (b) the case where 

 (contact).

Finally, although the solution to our simple model problem is readily guessed, we can see f
both cases that the plot of R versus d is only piecewise linear; the kink in each diagram indicate
the fact that a finite tangent stiffness operates when contact is not active, changing to an in
effective stiffness imposed by Eqs. (1.51) when contact between rod and obstacle is detec
This contact detection therefore becomes an important feature in general strategies for con
problems and introduces both nonlinearities and nonsmoothnesses into the global equation
this rather simple example demonstrates.

d d= d g0=

g0 d g0=

g 0= Fc

R R

d dg0d d

g0

(a) (b)

A0E

L0
--------- A0E

L0
---------

d g< 0
d g≥ 0
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Introduction and Notation

Having reviewed some relevant nonlinearities in the context of an admittedly simple structu
element, let us begin to generalize our problem description to encompass a larger group o
continuous bodies. We begin this development by first reviewing the basic equations of line
elasticity, where we assume small motions and linear material behavior. This discussion wi
provide the basis for a more general notational framework in the next section where we wil
remove the kinematic restriction to small motions and also allow the material to behave in a
inelastic manner.

The notation we will use in this section is summarized in Figure 1.6, where we have depict

solid body positioned in three-dimensional Euclidean space or . The set of spatial points

defining the body is denoted by , and we consider the boundary  to be subdivided int

regions,  and , where Dirichlet and Neumann boundary conditions will be specified a

discussed below. We assume that these regions obey the following

. (1.52)

The unknown, or dependent variable, in this problem is , the vector-valued displacement 

which, in general, depends upon  and time t .

Figure 1.6 Notation for the linear elastic initial/boundary value problem.

Equations of Motion

At any point in , the following statement of local linear momentum balance must hold:

ℜ 3
x

Ω Ω∂
Γu Γσ

Γu Γσ∪ Ω
Γu Γσ∩

∂
∅

=
=

u

x Ω∈

Ω
x

u
Γσ

Γu

ℜ 3

Ω
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Note that  denotes the divergence operator applied to , the Cauchy stress tensor. Th

vector f  denotes the distributed body force in , with units of force per unit volume, and ρ 
denotes the mass density, which need not be uniform. Equation (1.53) represents the bala
linear momentum in so-called direct notation; balance of angular momentum is enforced by

assumption that the tensor  is symmetric. We will frequently employ indicial notation in the 
work that follows. Toward that end Eq. (1.53) can be reexpressed as

, (1.54)

where indices i  and j  run between 1 and 3, and repeated indices within a term of an expres
imply a summation over that index, that is:

. (1.55)

One should take the notation  to indicate partial differentiation with respect to . When

using indicial notation repeated indices will always imply sums unless otherwise indicated.

As indicated above, the dependent variables are the , so it is necessary to specify the re

between the displacements and the Cauchy stress. In linear elasticity this is accomplished
additional equations. The first is the strain-displacement relation:

, (1.56)

where the notation  is used to denote the symmetric part of the displacement gradien

second equation is the linear constitutive relation between  and , which is normally

written via

. (1.57)

Note that  is the fourth-order elasticity tensor, to be discussed further below. Equation

,(1.56) and (1.57) can also be written in direct notation via

(1.58)

and

∇ T f+⋅ ρ
t

2

2

∂
∂ u

=

∇ T⋅ T

Ω

T

Tij j, f i+ ρ
t

2

2

∂

∂ ui=

Tij j, x j∂
∂Tij

j 1=

3

∑=

β,j x j

ui

Eij u i j,( )
1
2
--- ui j, uj i,+( )= =

u i j,( )

Tij Eij

Tij Cijkl Ekl=

Cijkl

E ∇ su
1
2
--- u∇ u

T∇+( )= =
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where the colon indicates double contraction of the fourth-order tensor C with the second-order 
tensor E.

The fourth-order elasticity tensor C is ordinarily assumed to possess a number of symmetries 
greatly reduce the number of independent components that describe it. It possesses major 

symmetry, which means , and it is also assumed to have minor symmetries, 

meaning, for example, that . Another important property o

the elasticity tensor is positive definiteness, which implies in this context that

(1.60)

. (1.61)

In the most general case, assuming the aforementioned symmetries and no others, the ela
tensor has 21 independent components. Various material symmetries reduce this number g
with the most specific case being given by an isotropic material that possesses rotational 
symmetry in all directions. In this case only two independent elastic constants are required
specify C, which under these circumstances can be written as

, (1.62)

where , the Kronecker delta, satisfies

; (1.63)

and λ and µ denote the Lame parameters for the material. These can be written in terms of the
more familiar elastic modulus and Poisson’s ratio via

(1.64)

. (1.65)

The quantity  is also known as the shear modulus for the material.

Substitution of (1.58) and (1.59) into (1.53) gives a partial differential equation for the vecto
valued unknown displacement field u. Full specification of the problem at hand must include 
suitable boundary and initial conditions as discussed next.

T C:E=

Cijkl Cklij=

Cijkl Cjikl Cjilk Cijlk= = =

Aij Cijkl Akl 0 for all symmetric tensors A >

Aij Cijkl Akl 0 iff A=0=

Cijkl λδij δkl µ δik δjl δil δjk+[ ]+=

δij

δij

1  if  i j=

0  otherwise



=

λ Eν
1 ν+( ) 1 2ν–( )

--------------------------------------=

µ E
2 1 ν+( )
--------------------=

µ
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Boundary and Initial Conditions

Paralleling the earlier discussion of the one-dimensional example, we will consider the 
possibility of two types of boundary conditions, Dirichlet and Neumann. Dirichlet boundary 

conditions will be imposed on the region  in Figure 1.6 as follows:

. (1.66)

Note that  denotes a prescribed displacement vector depending, in general, on spa
position and time. The simplest and perhaps most common example of such a boundary 
condition would be a fixed condition that, if imposed throughout the time interval of interest

 and for all of , would imply .

The other type of boundary condition is a Neumann or traction boundary condition. To write

such a condition, we must first define the concept of traction on a surface. If we use  to denote

the outward normal to the surface  at a point , the traction vector at  is define

, (1.67)

or in indicial notation

. (1.68)

Physically this vector represents a force per unit area acting on the external surface at . A
Neumann boundary condition is then written in the current notation as

. (1.69)

Note that  is the prescribed traction vector field on . One could identify 

several examples of such a boundary condition. An unfixed surface free of any external for

would be described by . A surface subject to a uniform pressure loading , on the o

hand, could be described by setting , where we assume a compressive 
pressure to be positive.

With these definitions in hand, we recall the restrictions (1.52) on  and  and physicall

interpret them as follows: 1) one must specify either a traction or a displacement boundary

condition at every point of ; and 2) at each point of , one may not specify both the tra
and the displacement but must specify one or the other. In fact, these conditions are slightl
stringent than required. For example, the problem remains well-posed if, for each compone

direction i , we specify either the traction component or displacement component  at e

point  as long as for a given spatial direction, we do not attempt to specify both.

Γu

u x t,( ) u x t,( ) x∀ Γ u t 0 T,( )∈,∈=

u x t,( )

0 T,( ) Γu u x t,( ) 0=

n

Γu x Γu∈ t x

t Tn=

t i Tij nj=

x

T x t,( )n x( )( ) t x t,( ) x∀ Γ σ t 0 T,( )∈,∈=

t x t,( ) Γσ 0 T,( )×

t 0= p

t x t,( ) p– n x( )=

Γu Γσ

Ω∂ Ω∂

t i ui

x Ω∂∈
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In other words, we may specify a displacement boundary condition in one direction at a po
while specifying a traction boundary condition in the other. An example of such a case wou
the common “roller” boundary condition where a point is free to move in a traction-free man
tangent to an interface (i.e., a traction boundary condition), while being constrained from 
movement in a direction normal to an interface (i.e., a displacement boundary condition). O
course, a multitude of other boundary condition permutations could be identified. Thus, whi
choose a rather simple boundary condition restriction, summarized by (1.52), for notationa
simplicity, it is important to realize that many other possibilities exist and require only minor
alterations of the methodology we will discuss.

The final important ingredient in our statement of the linear elastic problem is the specificat
initial conditions. One may note that our partial differential equation (1.53) is second order 
time; accordingly, two initial conditions are required. In the current context these amount to

initial conditions on the displacement  and the velocity  and can be rather straightforwa
specified via

(1.70)

, (1.71)

where  and  are the prescribed initial displacement and velocity fields, respectively.

Problem Specification

We now collect the equations and conditions of the past two sections into a single problem
statement for the linear elastic system shown in Figure 1.6. For the elastodynamic case thi
problem falls into the category of an initial/boundary value problem, since both types of 
conditions are included in its definition. Our problem is formally stated as follows:

Given the boundary conditions  on  and  on , the initial conditions 

and  on , and the distributed body force f  on , find the displacement field  on 

 such that:

, (1.72)

, (1.73)

, (1.74)

u u̇

u x 0,( ) u0 x( ) on Ω=

t∂
∂u

x 0,( ) v 0 x( ) on Ω=

u0 v 0

t Γσ 0 T,( )× u Γu 0 T,( )× u0

v 0 Ω Ω 0 T,( )× u

Ω 0 T,( )×

∇ T f+⋅ ρ
t

2

2

∂
∂ u

 on Ω 0 T,( )×=

u x t,( ) u x t,( ) on Γu 0 T,( )×=

t x t,( ) t x t,( ) on Γσ 0 T,( )×=
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, (1.75)

, (1.76)

where the Cauchy stress  is given by

. (1.77)

Equations (1.72) through (1.77) constitute a linear hyperbolic initial/boundary value problem

the dependent variable .

The Quasistatic Approximation

Before leaving the elastic problem, it is worthwhile to discuss how our problem specification
change if inertial effects are negligible in the equilibrium equations. This special case is ofte
referred to as the quasistatic assumption and considerably simplifies specification of the 
problem.

Simply stated, the quasistatic assumption removes the second temporal derivative of  fro
(1.72) thereby eliminating the need for initial conditions (1.73) and (1.74). Such an 
approximation is appropriate when the loadings do not vary with time or when they vary ov
time scales very much longer than the periods associated with the fundamental structural m

of . It is convenient, however, to maintain time in our description of the problem for two 

reasons: 1) the loadings  and f  and the displacement condition  may still vary with time; an
2) when we consider more general classes of constitutive equations, we may wish to allow
dependence in the stress/strain response. Accordingly, we state below a boundary value p
appropriate for quasistatic response of a linear elastic system.

Given the boundary conditions  on ,  on , and the distributed body

force f  on , find the displacement field  on  such that:

, (1.78)

, (1.79)

, (1.80)

where the Cauchy stress  is given by

. (1.81)

u x 0,( ) u0 x( ) on Ω=

t∂
∂u

x 0,( ) v 0 x( ) on Ω=

T

T C: ∇ su( )=

u

u

Ω
t u

t Γσ 0 T,( )× u Γu 0 T,( )×

Ω 0 T,( )× u Ω 0 T,( )×

∇ T f+⋅ 0 on Ω 0 T,( )×=

u x t,( ) u x t,( ) on Γu 0 T,( )×=

t x t,( ) t x t,( ) on Γσ 0 T,( )×=

T

T C: ∇ su( )=
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ar, 
We note in passing that given a time , Eqs. (1.78) through (1.81) constitute a line
elliptic boundary value problem governing the dependent variable u.

t 0 T,( )∈
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Introduction

A key feature of the finite element method is the form of the boundary value problem (or ini
boundary value problem in the case of dynamics) that is discretized. More specifically the fi
element method is one of a large number of variational methods that rely on the approxima
integral forms of the governing equations. In this section we briefly examine how such integ
(alternatively, weak or variational) forms are constructed for the linear elastic system we ha
introduced.

Quasistatic Case

It proves convenient from notational and conceptual viewpoints to consider the quasistatic 
first. Accordingly, we recall Eqs. (1.78) through (1.81) and explore an alternative manner in
which these conditions can be stated. We consider a collection of vector-valued functions w that 
we call weighting functions for reasons that will soon be clear. We require that these functio

 satisfy

. (1.82)

Furthermore, it is assumed that these functions are sufficiently smooth so that all partial 
derivatives can be computed. Suppose we have the solution u of Eqs. (1.78)-(1.81). We can then

take any smooth function  satisfying (1.82) and compute its dot product with (1.78), which
must produce

(1.83)

at each time . We can then integrate (1.83) over  to obtain

. (1.84)

Equation (1.84) can be manipulated further by noting that

(1.85)

(product rule of differentiation) and by also taking advantage of the divergence theorem fro
multivariate calculus:

. (1.86)

w:Ω ℜ 3→

w 0 on Γu=

w

w ∇ T f+⋅( )⋅ 0 on Ω=

t 0 T,( )∈ Ω

w ∇ T f+⋅( ) Ωd⋅
Ω
∫ 0=

w ∇ T⋅( )⋅ ∇ Tw( ) w∇( ):T–⋅=

∇ Tw( ) Ωd⋅
Ω
∫ n Tw⋅( ) Γd

Ω∂
∫=
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Note that n is the outward directed normal on , and  is a differential area of this surfac
Use of Eqs. (1.85) and (1.86) in (1.84) and rearranging gives

. (1.87)

Taking advantage of the symmetry of T and noting, from Eq. (1.67), that the surface traction t  
equals Tn, we can write:

. (1.88)

We now recall restrictions (1.52), which tell us that  is the union of  and . Since by

definition on , we can write

, (1.89)

where the last equality incorporates the boundary condition  on .

We collect these calculations to conclude

, (1.90)

which must hold for the solution u of Eqs. (1.78)-(1.81) for any w satisfying condition (1.82). 

In order to complete our alternative statement of the boundary value problem, the concepts

solution and variational spaces need to be introduced. Let us define the solution space  

corresponding to time t  via

(1.91)

and the weighting space W via

. (1.92)

With these two collections of functions in hand, let us consider the following alternative 
statement of the boundary value problem summarized by Eqs.(1.78)-(1.81):

Given the boundary conditions  on ,  on , and the distributed body

force f  on , find the  for each time  such that:

Ω∂ Γd

w∇( ):T Ωd
Ω
∫ w f Ωd⋅

Ω
∫ n Tw⋅( ) Γd

Ω∂
∫+=

n Tw⋅( ) Γd
Ω∂
∫ w Tn⋅( ) Γd

Ω∂
∫ w t Γd⋅

Ω∂
∫= =

Ω∂ Γu Γσ

w 0= Γu

w t Γd⋅
Ω∂
∫ w t Γd⋅

Γu

∫ w t Γd⋅
Γσ

∫+ w t Γd⋅
Γσ

∫= =

t t= Γσ

w∇( ):T Ωd
Ω
∫ w f Ωd⋅

Ω
∫ w t Γd⋅

Γσ

∫+=

St

St u u u t( ) on Γu, u  is smooth={ }=

W w w 0 on Γu, w is smooth={ }=

t Γσ 0 T,( )× u Γu 0 T,( )×

Ω 0 T,( )× u St∈ t 0 T,( )∈
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for all , where  is as defined in (1.91), W is as defined in (1.92), and where the Cauchy

stress  is given by

. (1.94)

Since it explicitly requires only a weighted integral of the governing partial differential equa
to be zero, rather than the differential equation itself, this statement of the boundary value 
problem is often referred to as a weak formulation.

Based upon the above derivation of the weak form, it should be clear that the solution u of Eqs. 
(1.78)-(1.81) (sometimes referred to as the strong form) will satisfy our alternative statement 
summarized by Eqs. (1.93) and (1.94). Less clear is the fact that solutions of the weak form
satisfy the strong form, as must be true for the two problem statements to be truly equivale
Although not established here this equivalency can be rigorously established; the intereste
reader should consult [Hughes, T.J.R., 1987] for details. In the present discussion we simp

remark that the equivalent argument depends crucially on the satisfaction of (1.93) for all 

with the arbitrariness of  rendering the two statements completely equivalent.

Peeking ahead to numerical strategies, we can also remark that approximate methods will 
effect narrow our definitions of the solution and weighting spaces to so-called finite-dimensional 
subspaces. Simply stated, this means that rather than including the infinite number of smou 
and w satisfying the requisite boundary conditions in our problem definition, we will restrict o

attention to some finite number of functions comprising subsets of  and W.

In so doing we introduce a difference between the solution of our (now approximate) weak
and the strong form, where the degree of approximation is directly related to the difference
between the full solution and weighting spaces and the subsets of them used in the numer
procedure.

Finally, it is worthwhile at this point to make a connection to so-called virtual work methods that 
may be more familiar to readers versed in linear structural mechanics. In this derivation we
work in indicial notation so that the meaning of the direction notation statements above can

reinforced. Accordingly, for a possible solution  of the governing equations, let us write t

following expression for the total potential energy of the system at hand:

. (1.95)

w∇( ):T Ωd
Ω
∫ w f Ωd⋅

Ω
∫ w t Γd⋅

Γσ

∫+=

w W∈ St

T

T C: ∇ su( )=

w W∈
w

St

ui

P ui( ) 1
2
--- u i j,( )Cijkl u k l,( ) Ωd

Ω
∫=

ui f i Ωd
Ω
∫ ui t i Γd

Γσ

∫––
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Note that the first term on the right-hand side represents the total strain energy associated with 

, and the last two terms represent the potential energy of the applied loadings  and 

virtual work principle for this system simply states that the potential energy defined in (1.95)

should be minimized by the equilibrium solution. Accordingly, let  now represent the actu

equilibrium solution. We can represent any other, kinematically admissible displacement fie

, where ε is a scalar parameter (not necessarily small), and  is a so-called virtua

displacement that we assume to obey the boundary conditions outlined in (1.82). This restriction 

on the  causes  to satisfy the Dirichlet boundary conditions (hence the term 

“kinematically admissible”) because the solution  does. We can write the total energy 

associated with any of these possible solutions via

. (1.96)

We now note that if the potential energy associated with  is to be lower than that of any 

possible solution , then the derivative of  with respect to  at  (i.

at the solution ) should be zero for any  satisfying conditions (1.82), since  is an 

extremum point of the function P. Computing this derivative of (1.96) and setting the result eq
to zero yields

, (1.97)

which must hold for all  satisfying the boundary condition on . Equation (1.97) can be

manipulated further by noting that

. (1.98)

The last equality in (1.98), while perhaps not intuitively obvious, holds because of the symm

of :

ui f i t i

ui

ui εwi+ wi

wi ui εwi+

ui

P ui εwi+( ) 1
2
--- u i j,( ) εw i j,( )+( )Cijkl u k l,( ) εw k l,( )+( ) Ωd

Ω
∫=

ui εwi+( )f i Ωd
Ω
∫– ui εwi+( )t i Γd

Γσ

∫–

ui

ui εwi+ P ui εwi+( ) ε ε 0=

ui wi ui

εd
d

ε 0=
P ui εwi+( )

w i j,( )Cijkl u k l,( ) Ωd
Ω
∫

wi f i Ωd
Ω
∫ wi t i Γd

Γσ

∫––
0= =

wi Γu

w i j,( )Cijkl u k l,( ) w i j,( )Cijkl Ekl=

w i j,( )Tij wi j, Tij==

Tij
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Use of (1.98) in (1.97) yields

, (1.100)

which is seen to be nothing more than the indicial notation counterpart of (1.93). Summariz
we see that the weak or integral form of the governing equations developed previously can
interpreted as a statement of the principle of minimum potential energy. It is because of thi

alternative viewpoint that the weighting functions  are sometimes called variations or virt

displacements, with the terminology used often depending upon the mathematical and phy
arguments used to develop the weak form.

Despite the usefulness of this physical interpretation, it should be noted that the presence 
energy principle is somewhat specific to the case at hand and may be difficult or impossible
deduce for many of the nonlinear systems to be considered in our later study. For example
systems are not conservative, including those featuring inelasticity, so at best our thermody
understanding must be expanded if we insist on formulating such problems in terms of ene
principles. Thus while the energy interpretation is enlightening for many systems, including
those featuring elastic continuum and/or structural response, insistence on this approach fo
general applications of variational methods can be quite limiting. It is noteworthy, for examp
that the derivation given in Eqs. (1.83)-(1.90) depended in no way upon the system being 
conservative or even upon the form of the constitutive equation used. We will exploit the 
generality of this weighted residual derivation as we increase the level of nonlinearity and 
complexity in the chapters to come.

Fully Dynamic Case

Another advantage of the weighted residual approach is that it can be straightforwardly app
to dynamic problems. Before examining the dynamic case in detail, whose development pa
that of quasistatic problems, it is worthwhile to emphasize again the definitions of the weigh
and solution spaces and to highlight the differences between them. Examining the definitio

 in (1.91) and that of W in (1.92), we see that  depends on t  through the boundary 

conditions on , while W is independent of time. We retain these definitions in the current ca

and pose the following problem corresponding to the elastodynamic system posed in the la
section:

w i j,( )Tij
1
2
--- wi j, wj i,+( )Tij=

1
2
--- wi j, Tij wj i, Tji+( )=

wi j, Tij=

wi j, Tij Ωd
Ω
∫ wi f i Ωd

Ω
∫– wi t i Γd

Γσ

∫– 0=

wi

St St

Γu
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Given the boundary conditions  on  and  on , the initial conditions 

and  on , and the distributed body force f  on , find the  for each time 

 such that:

(1.101)

for all , where S is as defined in (1.91), W is as defined in (1.92), and where the Cauchy 

stress  is given by

. (1.102)

In addition, the solution u is subject to the following conditions at :

(1.103)

and

, (1.104)

both of which must hold for all .

The integral form of the dynamic equations given in (1.101) is obtained just as was done in
quasistatic case, by taking the dynamic governing partial differential equation (1.72) and 
multiplying it by a weighting function, integrating over the body, and applying integration by
parts to the stress divergence term. The new ingredients in the current specification are the
conditions summarized by Eqs. (1.103) and (1.104) but should be recognized by the reade
simple weighted residual expressions of the strong form of the initial conditions given in Eq
(1.75) and (1.76).

Before leaving this section, we reemphasize the fact that the weighting functions are time 
independent while the solution spaces remain time dependent. This fact will have importan
consequences later when numerical algorithms are discussed because, in effect, we will w

use the same classes of functions in our discrete representations of W and . These 

discretizations will involve spatial approximation, which in the case of , will leave the tim

variable continuous in the discrete unknowns of the system to be solved.

This semidiscrete approach to transient problems is pervasive in computational mechanics an
has its origin in the current context in the fundamental difference between the weighting an
solution spaces.

t Γσ 0 T,( )× u Γu 0 T,( )× u0

v 0 Ω Ω 0 T,( )× u St∈

t 0 T,( )∈

ρw
t

2

2

∂
∂ u Ωd⋅

Ω
∫ w∇( ):T Ωd

Ω
∫+ w f Ωd⋅

Ω
∫ w t Γd⋅

Γσ

∫+=

w W∈
T

T C: ∇ su( )=

t 0=

w u 0( ) u0–( ) Ωd⋅
Ω
∫ 0=

w
t∂

∂u
0( ) v 0– 

  Ωd⋅
Ω
∫ 0=

w W∈

St

St
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Large Deformation Problems
IntroductionNotational FrameworkLagrangian and Eulerian DescriptionsGoverning Equations in the Spatial Frame

Introduction

In this section we extend our discussion of the linear elastic problem to accommodate two 
important features: potentially large motions and deformations, and nonlinear material resp
We will do this by introducing a more general notational framework in which we will work 
throughout the text and then by examining in a fairly nonrigorous fashion how, provided cer
concepts are kept in mind, the equations governing large deformation initial/boundary value
problems are similar in form to their familiar counterparts from the small deformation theory
Rigorous prescription and understanding of large deformation problems can only be achiev
through a careful examination of the concepts of nonlinear continuum mechanics, which w
the concern of the next chapter.

Notational Framework

The basic system we wish to consider is depicted schematically in Figure 1.7. We consider

body, initially in a location denoted by , undergoing a time-dependent motion  that desc

its trajectory through the ambient space (assumed here to be ). The set  is called the
reference configuration and can be thought of as consisting of points X that serve as labels for the
material points existing at their respective locations.

Figure 1.7 Notation for large deformation initial/boundary value problems.

For this reason the coordinates X are often called reference or material coordinates. We assume, 

as before, that the surface  of  can be decomposed into subsets  and , obeying

restrictions (1.52). The general interpretation of these surfaces remains the same: traction 

Ω ϕ

ℜ 3 Ω

Ω

Γσ

Γu
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X
ϕ
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boundary conditions will be imposed on , and displacement boundary conditions will be

imposed on . Full specification of these boundary conditions must be deferred, however

some continuum mechanical preliminaries are discussed.

We have mentioned that the motion  is, in general, time dependent. In fact, we could writ

fact in mathematical terms as . If we fix the time argument of , we obta

configuration mapping , summarized as , which gives us the location of the bo

at time t given the reference configuration . Coordinates in the current location  o

body will be denoted by .

The current location is often called the spatial configuration and the coordinates, , spatial 

coordinates. Given a material point  and a configuration mapping , we may write

. (1.105)

A key decision in writing the equations of motion for this system is whether to express the 

equations in terms of  or .

Lagrangian and Eulerian Descriptions

The choice of whether to use reference coordinates  or spatial coordinates  in the prob
description is generally highly dependent on the physical system to be studied. For examp
suppose we wish to write the equations of motion for a gas flowing through a duct or for a fl
flowing through a nozzle. In these cases the physical region of interest (the control volume
bounded by the duct or nozzle) is fixed and does not depend on the solution or time.

It could also be observed that identification of individual particle trajectories in such problem
probably not of primary interest, with such quantities as pressure, velocity, temperature, an
forth at particular locations in the flow field being more desirable. In such problems it is 
generally most appropriate to associate field variables and equations with spatial points or 

current notation, points . A system described in this manner is said to be utilizing the Eulerian 

description and implicitly associates all field variables and equations with spatial points  

without specific regard for the material points  involved in the flow of the problem. Most flu
and gas dynamics problems are written this way, as are problems in hydrodynamics and so
problems in solid mechanics involving fully developed plastic flow.

When thinking of Eulerian coordinate systems, it is sometimes useful to invoke the analogy
watching an event through a window: the window represents the Eulerian frame and has o
coordinate system attached to it. Particles pass through our field of view thereby defining a

Γσ

Γu

ϕ

ϕ :Ω 0 T,( ) ℜ 3→× ϕ

ϕ t ϕ t :Ω ℜ 3→

Ω ϕ t Ω( )

x

x

X Ω∈ ϕ t

x ϕ t X( )=

X Ω∈ x ϕ t Ω( )∈

X x

x

x

X
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but we describe this flow from the frame of reference of our window without specific referen
the particles undergoing the motion we observe.

In most solid mechanics applications, by contrast, the identity of specific material particles 
central interest in modeling a system. For example, the plastic response of metals is histor
dependent, meaning that the current relationship between stress and strain at a point in the
medium depends on the deformation history associated with that material point. To use suc
models effectively requires knowledge of the history of individual particles, or material poin
throughout a deformation process. Furthermore, many physical processes we wish to desc
not lend themselves to an invariant Eulerian frame: in a forging process, for example, the m
the end of the procedure occupies a very different region in space than it did at the outset. 
these and other reasons, the predominant approach to solid mechanics systems is to write
equations in terms of material coordinates or to use the Lagrangian frame of reference.

Returning to the notation summarized in Figure 1.7, we associate all field variables and equ

with points  and keep track of these reference particles throughout the process. One
note, in the last subsection, a bias toward this approach already; namely, we have written t

primary unknown in the problem ( ) as a function of  and . 

Governing Equations in the Spatial Frame

With the above discussion as background, we turn now to the equations of motion governin
motion of a medium. Interestingly if we adopt for the moment the spatial frame as our fram
reference, the form of these equations is largely unchanged from the linear elastic case pre

previously. Let us fix our attention on some time  and consider the current locatio

(unfortunately unknown to us) of the body . Over this region , the following conditio

must hold:

, (1.106)

, (1.107)

and

, (1.108)

subject, of course, also to initial conditions at . Some explanation of these equations

necessary. The nabla operator  in (1.106) is to be interpreted as being with respect to sp

coordinates .

The acceleration  is referred to spatial coordinates but is the (material) acceleration of the

particle currently at , and  is to be interpreted as a given or prescribed location for part

X Ω∈

ϕ X Ω∈ t 0 T,( )∈

t 0 T,( )∈
Ω ϕ t Ω( )

∇ T f+⋅ ρa  on ϕ t Ω( )=

ϕ t ϕ t  on ϕ t Γu( )=

t t  on ϕ t Γσ( )=

t 0=

∇
x

a

x ϕ t
Theory Manual Formulation of Nonlinear Problems - Large Deformation Problems - Governing Equations in the Spatial Frame 30



nt 

 that 
 case 
n 

 

s of 

though 

ose 

saying 

inder 
on the Dirichlet boundary. We leave the constitutive law governing  unspecified at this poi

but remark that, in general, the stress must depend on  through appropriate strain/

displacement and stress/strain relations. What we see from Eqs. (1.106) through (1.108) is
the equations of motion are easily written in the form inherited from the kinematically linear
but that the frame in which this is done, the spatial frame, is not independent of the unknow

field  but relies upon it for its own definition.

Thus although the equations we now consider are essentially identical in form to those from
linear elasticity, they possess a considerably more complex relationship to the dependent 
variable. As will be provided in the next chapter, full and rigorous specification of this more 
general boundary value problem requires an in-depth treatment of the continuum mechanic
large deformations.

Before leaving this topic, an item that frequently causes confusion should be addressed. Al
we have written the governing equations in (1.106) through (1.108) in terms of the spatial 
domain, this does not imply an Eulerian statement of the problem at hand. In fact, if we cho

(as we have done) to consider our dependent variable (in this case ) to be a function of 

reference coordinates, the framework we choose is inherently Lagrangian. Another way of 
this is that Eqs. (1.106)-(1.108) are the Lagrangian equations of motion which have been 

converted through a change-of-variables so that they are written in terms of . In the rema
of this text, the reader should assume a Lagrangian framework unless otherwise noted.

T

ϕ t

ϕ t

ϕ t

x
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